
US Naval Academy Robo-Goat

2009 IGVC Design Report

Project Advisors:

Associate Professor Joel M. Esposito

Associate Professor Brad Bishop

Team Members:

MIDN J. D. Lovett, MIDN T. M. Fleming, MIDN J. P. Smith

MIDN R. P. Chandler, MIDN J. M. Lacy, MIDN M. A. Calvanico

I certify that the report and vehicle built by this team for the US Naval Academy‟s entry into the Intelligent Ground

Vehicle Competition was all done by students; that the work was substantial (100% of design and construction done

during 2008-2009 academic year); and that the work was awarded credit for a capstone senior design course.

Joel Esposito _______________ Assoc. Prof. Systems Engineering

 2

Background Information

The 2009 competition will be the first year a Naval Academy team has competed in the

Intelligent Ground Vehicles Competition, so there is no local precedent set. Despite USNA having not

previously competed, online design reports and schematics at the IGVC website from past competitions

acted as starting blocks for our own vehicle. These reports set the precedents needed to establish a proper

timetable, documentation, and testing cycle. Previous Capstone projects involving ground vehicles as well

as our many system courses aided us in our design process and our implementation of the necessary

sensors involved.

Objectives

The robotic vehicle must be safe, cost-effective and be able to properly perform the obstacle

course. In order to be safe, the vehicle will run at limited speeds and accurately avoid obstacles. To

maximize cost-effectiveness, a simple design will be implemented with low maintenance, low power

consumption and high endurance. To maximize performance, the vehicle again must accurately avoid

obstacles, utilize all sensors, be able to perform multiple trial runs, react quickly, be durable and rugged,

easy to operate and quick to start.

The objectives for our project, listed above, came from both the competition website and from

what we determined, as a group, were essential to building a successful autonomous vehicle. The

following diagram shows the priority of objectives in our design process. Once the weighted objectives

were determined, we came up with functions that were the driving force of our project.

 3

Final Design Narrative

Drive Train and Platform Design

Chassis: We decided to invest our time and money into a powered wheelchair in order to

simplify the robot's drive train. With the removal of the chair, joystick control board, and the plastic

frame, a powered wheelchair was nothing more than a square metal frame housing two independent

brushless DC motors and a battery bank. We selected the Drive Sunfire Plus Rear Wheel Drive, which

proved to be the perfect foundation for our robot. In regards to the following decision matrix, this

particular wheelchair was chosen because the two motors allowed for zero turn radius and differential

drive, while reaching 5 mph. Also, the 2‟ x 3‟ frame fell well within the IGVC competition rules.

Platform Manufacturer Price ($) Turn

Radius

Motors Max Speed Size

Sunfire Plus Drive 1530 0” Dual DC 6 mph 24” x 35”

Sun Runner 3 Shop Rider 1480 37” Trans-Axle 5 mph 24” x 38”

Compass Golden Tech 3699 19” Dual DC 5 mph 24.5” x 38”

Platform: A platform needed to be mounted on the wheelchair in order to house the various

sensor equipment, batteries, and the laptop computer. We decided a two tiered design would provide

enough stability to support the equipment, while still maximizing the dimensions set by the competition

constraints. The dual tiers separated the batteries and laptop from the sensors to ensure the components

were not thrown off due to electromagnetic disturbances. The original design was deemed overly

complicated by the woodshop carpenters, because of the hole locations and the interlocking beams. We

modified the design and produced the current two tiered wooden platform currently attached to the

chassis. The plywood and metal rods allowed for easy modifications to the platform‟s shape and height. It

also made assembly and disassembly an easy process.

 Driver Controller: Since the chassis had two independent DC motors, a dual H-bridge motor

controller was needed to link the laptop to the motors. After weeks of fruitless manipulations to the

existing joystick controller, we chose the commercial, off the shelf, Roboteq AX-1500. This particular

board allowed for dual motor control, serial communications, a 30 ampere threshold, and multiple motor

inputs. The control board accepted multiple inputs from the computer to drive the wheels; one input

controlled the forward and reverse (translational velocity), while the other controlled the left and right

motions (angular velocity). The „driveRoboteq‟ function established two variables [V, W] that were

called upon by other function within the master code. The translational velocity was represented by the

 4

symbol [V] and ranged between the values [-1, 1]. The value [-1] meant the wheelchair moved in full

reverse and the value [1] meant the wheelchair move in full forward. The angular velocity was

represented by symbol [W] and ranged between values [-1, 1] as well. The value [-1] meant the

wheelchair turned full left and the value [1] meant the wheelchair turned full right. Using a tachometer,

we tested the rotations per minute and found the appropriate speed setting [3F]. Within the function, a

section of code limited the speed of the wheelchair to less than 5 mph. After the joystick controller was

removed, which acted like a speed governor, it was necessary to limit the speed. The Roboteq board

worked using a hexadecimal value as an input. The values of hexadecimal ranged from [00] to [7F], but

we limited the maximum value to a little above 50% power or [3F]. Within the laptop‟s master code, the

„driveRoboteq‟ function converted the numerical values of [V] and [W], given by the sensors, into

hexadecimal by multiplying the decimal inputs by [63] and then sent them to the AX-1500, which

powered the motors accordingly.

The „initRoboteq‟ function established a serial port and bit rate between the laptop and the AX-

1500 allowing information to pass freely. The communication port used in our system was port 6 and the

required specifications were every seven data bits. The high signal was on the even parity and the

terminator was set to the center. Once this was complete, the board was opened and operational.

Internal Brake System: The chassis that was chosen came with internal, electronic regenerative

brakes. Prior to use, the brakes needed to be disengaged. Original this was done with the built in joystick

controller, but upon removal, the brakes needed to be disengaged directly. After numerous setbacks, we

realized that a direct 24 V needed to be applied directly from the batteries. There is an attached brake

release, requiring two 24V inputs and one ground line. After the brakes were released, the user could

control the wheels more freely without any back EMF from the AX 1500.

Manual Emergency Stop

 The IGVC mandated the emergency stop be a hardwired device, so we placed a switch between

the motor controller and the battery banks. This severed the power to the controller, which forced the

motors to stop. The switch was mounted on PVC to reach the 2‟ minimum height.

Laser

Our group went through many options on the path to arriving at our final design. One of the first

problems we encountered was actually figuring out what laser we wanted to use. Three different models

were researched: one from Acuity Lasers, a Hokuyo and the SICK. Our decision matrix for the three

different lasers is shown below:

 5

We decided to use the SICK LMS 200 for two main reasons. First, the Weapons and Systems

Department had it in stock, which allowed our group to save the cost of the laser. We were given an

internal grant to help offset the cost of parts, but the cost of the laser would have used up over half of the

funds allotted. The second reason we chose the LMS 200 over the other models was that it had the

greatest range. Using the following calculation,

sec3600

1
*

5280
*

5 hr

mi

ft

hr

mi
, we determined that the

fastest our vehicle would be traveling was 7.33 ft/s. The eighty meter range of the SICK allowed us to

have plenty of look-ahead distance, which would let us find obstacles very far in advance and start

avoiding them much sooner. Based on these two parameters, the LMS 200 was the best choice for our

group. We did not have to wait to order the laser or to process and then ship it. This proved very helpful

because we encountered some problems getting our program to receive all the data from the scans.

The laser sent its data over a serial cable, which inherently means there will be problems when

trying to read this data in MATLAB. When we got the laser we were also given some previous code that

read the data and produced a plot showing the scan. However, the code did not work when we ran it with

our laser. We found that our buffer size was incorrect for the program. The LMS was sending more data

than the program allowed for. We spent nearly three weeks trying to solve the problem before simply

rewriting the code. We developed a new MATLAB script that we hoped would solve the buffer problem.

Fortunately we were able to get all the data in one scan and plot the scan in a polar plot. Once we got

communication between the laser and the computer, we were able to manipulate the plots and further

develop the code to find obstacles in front of the laser.

We decided to mount the SICK laser onto the vehicle‟s footrest. Having the laser mounted on the

footrest provided two distinct advantages over other mounting possibilities. The first being the fact that

the laser was low to the ground and able to pick up obstacles that may have been missed if it was mounted

higher on the platform. Since the obstacles at the competition can vary in size, we felt that mounting the

laser low on the vehicle gave us a good look ahead and ensured that we were able to detect any obstacle

on the course. The other advantage was it would remain level with the ground the vehicle was traveling.

If the wheelchair traveled up an incline, the laser might have picked up the ground in front of it as an

Laser Manufacturer Price Sweep Range Power Weight

AR4000 Acuity Lasers $7,500 300° 54 ft 5 V 22 oz

UTM30LX Hokuyo $5,590 270° 30 m 12 V 13 oz

LMS 200 SICK $5,571 180° 80 m 24 V 4.5 kg

 6

obstacle. Mounting the laser level with the chassis solved this problem, and we yet to detect the ground

as an obstacle. Mounting the laser on the foot rest was a very simple task. We drilled two holes through

the rubber and aluminum and inserted two bolts into the mounting holes on the bottom of the laser. It was

mounted slightly off center and to the rear of the footrest in order to avoid any collision with the laser

face.

GPS/Compass

The process of selecting our GPS unit was very straight forward. We initially conducted research

on handheld GPS units that provided the user with a graphical user interface. Since most of the

commercial, on the self, (COTS) GPS units were fairly expensive ($100+) and we would have to find a

way to hack in to them, we decided to check the in-house GPS units. After speaking with the Naval

Academy's in-house developed Rabbit 3000 based Navigation/Control System. We chose this unit

because it incorporated an accurate GPS (<3 meters) with an average refresh rate (0.5 Hz), a three-axis

magnetometer, accelerometers, gyros, a Rabbit 3000 processor, and had a skeleton code that was used in

several courses we took.

To use the GPS, we connected the unit to the laptop via serial connection and the programming

port. Since the unit did not have a direct serial connection, we used an onboard TTL port with a TTL to

RS-232 (serial) cable to send data to our laptop and we used a standard serial programming cable to

program the Rabbit processor via the programming port and Dynamic C coding. The data that we

requested from the unit came from the onboard Rabbit 3000 processor. In the present state, we only used

the latitude information, longitude information, and wireless emergency stop data, but we also export the

magnetometer data, number of transmissions, header, and footer.

The actual calculation data occurred in the MATLAB workspace. When the GPS, and e-stop, data

was sent out of the Rabbit processor via the TTL to RS-232 cable, MATLAB read the serial port on the

laptop the data was coming through and saved that as a string. Using the string read function in

MATLAB, we were able to break apart the message and save the data as a variable representative of what

it is, i.e. the latitude data was saved to the variable “lat”. With this data, and when desired waypoints have

been loaded, it was possible to determine a desired heading for the vehicle to drive.

Wireless Emergency Stop

 Our initial idea was to use a garage door remote as a transmitter, but this still required a

mechanical receiver. We decided upon a Futaba remote control and receiver. These systems are

commonly seen on remote controlled vehicles built by students. These parts were readily available and

 7

easily replaceable if they break. The Futaba receiver held 8 ports which could receive data from the

remote control.

Camera

The overall goal of the vision system was to look ahead at the course and determine where to

steer the vehicle. To do this, the vision system had to discern the white lanes from the grass field. Once

the lanes were found, the vision system had to find the center of the lane and determine if the robot was to

the left or to the right of the lane ahead so it could steer accordingly.

 First to achieve the goal of the vision system, we had to choose a camera to use. We kept in mind

the specific metrics, including specifically a simple design and accuracy of the sensors. We decided to

use in house parts to achieve the simple design metric. We were given two options: a D Link camera and

a Creative Live Notebook Ultra Camera. We had some experience with the D Link camera in previous

systems courses and we knew it was not as accurate as we would like. The Creative Live Notebook Ultra

boasted a 1.3 megapixel resolution and an ultra wide viewing angle of 85 degrees, which was be ideal for

seeing both of the lanes. We decided to use the Creative camera and were very pleased with the results. It

was accurate, performed the functions we needed and even came with software to adjust brightness and

other relevant camera settings. Additionally, this camera used a USB interface to communicate with the

laptop. The cost of the camera is $70.00 from newegg.com. Once the camera was selected we looked at

ways of mounting the camera to the frame of the vehicle. We decided to go with PVC pipe for several

reasons. The PVC pipe was solid and durable. It was also moveable and not glued, which allows us to

adjust the angle of the camera whenever necessary. One disadvantage to our setup was the shakiness

whenever the vehicle moved. This however was not necessarily attributed to the PVC pipe, but more to

the size of the hole, the PVC pipe went through, being too big. This hole can be filled to reduce the

shakiness of the structure.

 With all the hardware set up, we needed to come with accurate code to take the hardware and

come up with relevant data to steer the vehicle. To do this we used MatLab Simulink to program our

vision system. The following is pseudocode for how the vision system works (1) Take Image; (2)

Threshold and Crop; (3) Morphology; (4) Detect Lane; (5) Find Center of Lane (6) Output Where to

Aim. The main work of this system was done in the Threshold Subsystem, the Lane Detection

Subsystem, and the Find Lane Center (which was embedded MatLab code).

 8

Threshold Subsystem

Output

2

RGB

1

Video Viewer

Video

Viewer
ImageImageImage

Image Data Type

Conversion 1

Convert Image

to single

Image Data Type

Conversion

Convert Image

to single
Erosion

Erode

Dilation

Dilate

Crop and Threshold

u yfcn

hsv

2

rgb

1

This code looks only at rows 80-100 of the input image (which is used to look ahead in the course a

specific distance). Then it thresholds based on, in this case, the hue and value numbers. This was

embedded in code, because it was more versatile and easier to change the numbers for thresholding. It

was also easier to switch thresholding by hue, saturation, and value. To threshold by these numbers, we

had to take a picture and convert it to HSV. Once in HSV, we looked at the individual Hue, Saturation,

and Value images to decide which to threshold by. We used the MatLab „imtool‟ function to get specific

values for thresholding. We found that on different days we might need to threshold by hue, whereas

others we had to threshold by saturation, but as long as the lighting stayed somewhat constant over the

day it would threshold very effectively. Also, we originally had morphology in our simulink diagram to

reduce noise from bad thresholding. However, in the final model we took out the morphology, because

we were able to threshold effectively.

 9

 For the lane detection subsystem, we took several different approaches. At first, we had bad

videos that were unable to threshold very effectively, so we decided to try blob analysis and get the

centroids of the blobs, which we assumed to be the lanes. There was a problem with this in that if the

lanes were broken and not full blobs we were unable to get the lane data consistently. After this we

moved to a new approach called pixel searching. We wrote embedded MatLab code that looked at

specific rows and searched from left to right for the lane pixels in the image. The problem with this

approach was that if there was any noise whatsoever and the program runs into it, the program assumes

the noise pixel was the lane and ruins the whole approximation of the lane. This was unacceptable, so we

finally moved to using Hough transforms. Hough transforms worked by finding where large pixel

collections laid in the image to correlate to a straight line. We originally thought to use this approach, but

decided against it because there was too much noise and we thought it did not work well. Once we got

good thresholding images, we tried the Hough transform and it worked very well.

 The final component of the vision system was the lane center determination. We needed to find

the center of the lanes after finding them through the Hough transform. To do this we wrote embedded

MatLab code to calculate the center of the lane and tell the vehicle where to aim for. The main problem

this program had to address was how many lanes the lane detection system found. We knew there were

possible cases where only one lane was found or even no lanes were found. This program addressed

these cases in the following manner. If one lane was found and the midpoint of the lane was on the left

half of the screen, then we assumed the left lane. If the midpoint was in the right side then we assumed

the right lane. We will have to address the possibility of no lanes in the future, because as of now the

program will just aim straight, when in reality, we will probably need to make the robot rotate 360

degrees. Additionally, since we have no video data from actual competitions, we think that our single

lane decision making process might need to be changed. Until we actually run through the competition

course, we will not know how to tweak the system, but we should be able to make a more effective

decision when we have the data.

Subsystem Interfaces

Wheelchair

 Battery Bank: two 12 volt batteries supply 24 volts in series.

 Internal motor brakes require a continuous 24 volts to disengage.

 Each motor requires 9 ampere.

AX-1500 Controller

 30 ampere maximum limit.

 Connected RS-232 serial connector from control board to laptop.

 10

 The 24 volts from the battery bank are applied directly to the AX-1500 to power the board and

the motors.

 The control board must be initialized in MATLAB from an open serial port. This is done using

„initRoboteq‟.

Manual Emergency Stop

 The ground pin needed to be removed from the switch, in order to prevent the AX-1500 from

sending a back EMF through the wires and blowing a fuse.

Laser

 Requires customized RS232 serial cable.

 Requires customized power cable and complimentary (±12) volt power supply.

GPS/Compass

 The GPS unit was originally powered by a wall outlet, which was stepped down to a regulated

3.3V, but to make the component mobile, we used a regulated 5V from a 12V battery to power

the board.

Wireless Emergency Stop

 This system worked by sending a “high” voltage (binary 1) or “low” voltage (binary 0) to the

Rabbit processor via pin PD7.

 11

Design Evaluation

Drive Train and Platform Design

Objective 1 2 3 4 5

Quick Speed < 1 mph 1.5 mph 2.5 mph 3 mph 4.5 mph

Easy to

Operate

> 10 min

setup

7 – 10 min

setup

5 – 7 min

setup

3 – 5 min

setup

< 3 min

setup

Simple

Design

complete

custom build

several

custom parts

extensive

external

sources

little help

from outside

built with

COTS parts

Low

Maintenance

1 hour in

shop for 1

hour run

1 hour in

shop for 2

hour run

1 hour in

shop for 5

hour run

1 hour in

shop for 7

hour run

1 hour in

shop for 10

hour run

Quick Start > 60sec start

time

45 – 60sec

start time

30 – 45sec

start time

26 – 30sec

start time

15 – 25sec

start time

Durable complete

destruction

major repairs minor repairs minor

damage, no

work

no structural

damage

Rugged flat terrain

only

slight grades hilly small rocks all terrain

We tested the motor controller extensively to ensure each of the two motor functions were

capable of meeting the team‟s overarching functions. For the most part, the motor functions worked well,

but occasionally received errors from the various subsystems due to the clear delay between iterations of

[V] and [W]. Our vehicle design met all the constraints and standards set forth by the IGVC, but there

were a few technical and functional errors. The platform was 1” too narrow, hence, not meeting the 2‟

width minimum. This will need to be address in regards to future modifications to the overall design.

Greater gauge of wire is recommended as well as more fuses to prevent mishaps.

Objective 1 2 3 4 5

Obstacle No avoid Avoid 25% Avoid 50% Avoid 75% Avoid 100%

 12

Avoidance

Accurate

(Sensors)

Unreliable

readings

Can detect

25% of

objects

Can detect

50% of

objects

Can detect

75% of

objects

Can detect

100% of

objects

Durable in

collision

Complete

destruction

Major

damage

Structural

damage

Minor

cosmetic

damage

No damage

Laser The final design performed well. As stated earlier, our final design was very simple. It was able

to detect and avoid 100% of the obstacles. If the laser detected an obstacle, it would find a way around

the obstacle, and if it could not, then it would stop the vehicle. The way we demonstrated the use of the

laser was by setting up a test course and having the vehicle maneuver through the course. The left image

is the course from the laser‟s point of view, while the right image is an overall perspective.

The vehicle was able to move in the hall without hitting the obstacles. Overall we were satisfied

with this design aspect. If given more time, a more robust code could be written. Now, with the current

code, there is oscillation in the system because there is a delay from when the laser scans to when it sends

a command to the motors, to when it takes another scan.

GPS/Compass

To test the functionality of this system, the GPS unit should be taken out to a large field with a

secondary, hand-help GPS system. Fixes should be taken with both systems and compared. If they match,

the computational algorithm and motor control should be tested by entering desired waypoints and

actually setting the vehicle in motion to see if it reaches those points.

 While developing this system, the greatest difficulty was getting accurate, real-time data from the

GPS unit. As has been determined, the “buffer” size setting in MATLAB to read the serial port was

initially set to read 512 characters but our message was only approximately 57 characters. Since the

 13

buffer was set too large, multiple GPS messages would fill the buffer and after the first message was read,

old data would still be sitting in the buffer. To solve this problem, we redefined the buffer size in

MATLAB to fit exactly one message. Another method to solve this problem would be to “empty” the

buffer after each reading. This would alleviate the problem of multiple messages being in line since only

one message would be read before the buffer were emptied. For the time being, our solution works well.

Gantt Chart

Cost and Labor

 Drive Sun fire Plus Rear Wheel Drive Wheelchair - $1530.00

 NSC Semi-Rugged Laptop - $1475.00

 2 – Roboteq Ax1500 Motor Control Board - $275.00 ea.

 8 – 30amp fuses - $2.00 ea.

 RABBIT 3K Navigation Board - $400

 Emergency Stop - $100

Misc. Parts - $10

Total: $4081.00

 Student Labor - $26/hr * 126hr = $3,276

 14

 ($3,276 * 6students) = $19,656

 Advisor/Tech Support - $50/hr * 4hr = $200

 Total: $19,856

References

A. www.IGVC.org (Intelligent Ground Vehicle Competition Website) - This is where our group

was able to pull specs and information regarding the competition.

B. http://www.electricvehiclesusa.com/ - A site that has various parts needed to build an electric

vehicle ranging from frames to controllers

C. http://www.coolrobots.com/builders/newbie.html - This site is dedicated to the discussion and

assistance of new and upcoming mobile robot builders. With discussion and links to useful

information.

D. http://www.goldenmotor.com/ - A site that has various motors and drive systems, sorted by

torque and voltage requirements.

http://www.igvc.org/
http://www.electricvehiclesusa.com/
http://www.coolrobots.com/builders/newbie.html
http://www.goldenmotor.com/

