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Background Information 

The 2009 competition will be the first year a Naval Academy team has competed in the 

Intelligent Ground Vehicles Competition, so there is no local precedent set. Despite USNA having not 

previously competed, online design reports and schematics at the IGVC website from past competitions 

acted as starting blocks for our own vehicle. These reports set the precedents needed to establish a proper 

timetable, documentation, and testing cycle. Previous Capstone projects involving ground vehicles as well 

as our many system courses aided us in our design process and our implementation of the necessary 

sensors involved.  

 

Objectives 

The robotic vehicle must be safe, cost-effective and be able to properly perform the obstacle 

course. In order to be safe, the vehicle will run at limited speeds and accurately avoid obstacles. To 

maximize cost-effectiveness, a simple design will be implemented with low maintenance, low power 

consumption and high endurance. To maximize performance, the vehicle again must accurately avoid 

obstacles, utilize all sensors, be able to perform multiple trial runs, react quickly, be durable and rugged, 

easy to operate and quick to start.  

The objectives for our project, listed above, came from both the competition website and from 

what we determined, as a group, were essential to building a successful autonomous vehicle. The 

following diagram shows the priority of objectives in our design process.   Once the weighted objectives 

were determined, we came up with functions that were the driving force of our project.   
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Final Design Narrative 

Drive Train and Platform Design 

Chassis: We decided to invest our time and money into a powered wheelchair in order to 

simplify the robot's drive train. With the removal of the chair, joystick control board, and the plastic 

frame, a powered wheelchair was nothing more than a square metal frame housing two independent 

brushless DC motors and a battery bank. We selected the Drive Sunfire Plus Rear Wheel Drive, which 

proved to be the perfect foundation for our robot. In regards to the following decision matrix, this 

particular wheelchair was chosen because the two motors allowed for zero turn radius and differential 

drive, while reaching 5 mph. Also, the 2‟ x 3‟ frame fell well within the IGVC competition rules.   

 

Platform Manufacturer Price ($) Turn 

Radius 

Motors Max Speed Size 

Sunfire Plus Drive 1530 0” Dual DC 6 mph 24” x 35” 

Sun Runner 3 Shop Rider 1480 37” Trans-Axle 5 mph 24” x 38” 

Compass Golden Tech 3699 19” Dual DC 5 mph 24.5” x 38” 

 

Platform: A platform needed to be mounted on the wheelchair in order to house the various 

sensor equipment, batteries, and the laptop computer. We decided a two tiered design would provide 

enough stability to support the equipment, while still maximizing the dimensions set by the competition 

constraints. The dual tiers separated the batteries and laptop from the sensors to ensure the components 

were not thrown off due to electromagnetic disturbances. The original design was deemed overly 

complicated by the woodshop carpenters, because of the hole locations and the interlocking beams. We 

modified the design and produced the current two tiered wooden platform currently attached to the 

chassis. The plywood and metal rods allowed for easy modifications to the platform‟s shape and height. It 

also made assembly and disassembly an easy process.     

    

 Driver Controller: Since the chassis had two independent DC motors, a dual H-bridge motor 

controller was needed to link the laptop to the motors. After weeks of fruitless manipulations to the 

existing joystick controller, we chose the commercial, off the shelf, Roboteq AX-1500. This particular 

board allowed for dual motor control, serial communications, a 30 ampere threshold, and multiple motor 

inputs. The control board accepted multiple inputs from the computer to drive the wheels; one input 

controlled the forward and reverse (translational velocity), while the other controlled the left and right 

motions (angular velocity). The „driveRoboteq‟ function established two variables [V, W] that were 

called upon by other function within the master code. The translational velocity was represented by the 
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symbol [V] and ranged between the values [-1, 1].  The value [-1] meant the wheelchair moved in full 

reverse and the value [1] meant the wheelchair move in full forward.  The angular velocity was 

represented by symbol [W] and ranged between values [-1, 1] as well.  The value [-1] meant the 

wheelchair turned full left and the value [1] meant the wheelchair turned full right. Using a tachometer, 

we tested the rotations per minute and found the appropriate speed setting [3F]. Within the function, a 

section of code limited the speed of the wheelchair to less than 5 mph. After the joystick controller was 

removed, which acted like a speed governor, it was necessary to limit the speed. The Roboteq board 

worked using a hexadecimal value as an input. The values of hexadecimal ranged from [00] to [7F], but 

we limited the maximum value to a little above 50% power or [3F]. Within the laptop‟s master code, the 

„driveRoboteq‟ function converted the numerical values of [V] and [W], given by the sensors, into 

hexadecimal by multiplying the decimal inputs by [63] and then sent them to the AX-1500, which 

powered the motors accordingly.  

The „initRoboteq‟ function established a serial port and bit rate between the laptop and the AX-

1500 allowing information to pass freely. The communication port used in our system was port 6 and the 

required specifications were every seven data bits. The high signal was on the even parity and the 

terminator was set to the center.  Once this was complete, the board was opened and operational.  

 

Internal Brake System: The chassis that was chosen came with internal, electronic regenerative 

brakes.  Prior to use, the brakes needed to be disengaged. Original this was done with the built in joystick 

controller, but upon removal, the brakes needed to be disengaged directly.  After numerous setbacks, we 

realized that a direct 24 V needed to be applied directly from the batteries. There is an attached brake 

release, requiring two 24V inputs and one ground line. After the brakes were released, the user could 

control the wheels more freely without any back EMF from the AX 1500. 

 

Manual Emergency Stop 

 The IGVC mandated the emergency stop be a hardwired device, so we placed a switch between 

the motor controller and the battery banks. This severed the power to the controller, which forced the 

motors to stop. The switch was mounted on PVC to reach the 2‟ minimum height.  

 

Laser 

Our group went through many options on the path to arriving at our final design.  One of the first 

problems we encountered was actually figuring out what laser we wanted to use.  Three different models 

were researched: one from Acuity Lasers, a Hokuyo and the SICK.  Our decision matrix for the three 

different lasers is shown below: 
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We decided to use the SICK LMS 200 for two main reasons.  First, the Weapons and Systems 

Department had it in stock, which allowed our group to save the cost of the laser.  We were given an 

internal grant to help offset the cost of parts, but the cost of the laser would have used up over half of the 

funds allotted.  The second reason we chose the LMS 200 over the other models was that it had the 

greatest range.  Using the following calculation, 
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fastest our vehicle would be traveling was 7.33 ft/s.  The eighty meter range of the SICK allowed us to 

have plenty of look-ahead distance, which would let us find obstacles very far in advance and start 

avoiding them much sooner.  Based on these two parameters, the LMS 200 was the best choice for our 

group.  We did not have to wait to order the laser or to process and then ship it.  This proved very helpful 

because we encountered some problems getting our program to receive all the data from the scans.  

The laser sent its data over a serial cable, which inherently means there will be problems when 

trying to read this data in MATLAB.  When we got the laser we were also given some previous code that 

read the data and produced a plot showing the scan.  However, the code did not work when we ran it with 

our laser.  We found that our buffer size was incorrect for the program.  The LMS was sending more data 

than the program allowed for.  We spent nearly three weeks trying to solve the problem before simply 

rewriting the code. We developed a new MATLAB script that we hoped would solve the buffer problem.  

Fortunately we were able to get all the data in one scan and plot the scan in a polar plot.  Once we got 

communication between the laser and the computer, we were able to manipulate the plots and further 

develop the code to find obstacles in front of the laser. 

We decided to mount the SICK laser onto the vehicle‟s footrest. Having the laser mounted on the 

footrest provided two distinct advantages over other mounting possibilities. The first being the fact that 

the laser was low to the ground and able to pick up obstacles that may have been missed if it was mounted 

higher on the platform.  Since the obstacles at the competition can vary in size, we felt that mounting the 

laser low on the vehicle gave us a good look ahead and ensured that we were able to detect any obstacle 

on the course.  The other advantage was it would remain level with the ground the vehicle was traveling.  

If the wheelchair traveled up an incline, the laser might have picked up the ground in front of it as an 

Laser Manufacturer Price Sweep Range Power Weight 

AR4000 Acuity Lasers $7,500  300° 54 ft 5 V 22 oz 

UTM30LX Hokuyo $5,590  270° 30 m 12 V 13 oz 

LMS 200 SICK $5,571  180° 80 m 24 V 4.5 kg 
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obstacle.  Mounting the laser level with the chassis solved this problem, and we yet to detect the ground 

as an obstacle.  Mounting the laser on the foot rest was a very simple task.  We drilled two holes through 

the rubber and aluminum and inserted two bolts into the mounting holes on the bottom of the laser.  It was 

mounted slightly off center and to the rear of the footrest in order to avoid any collision with the laser 

face.  

 

GPS/Compass 

The process of selecting our GPS unit was very straight forward. We initially conducted research 

on handheld GPS units that provided the user with a graphical user interface. Since most of the 

commercial, on the self, (COTS) GPS units were fairly expensive ($100+) and we would have to find a 

way to hack in to them, we decided to check the in-house GPS units. After speaking with the Naval 

Academy's in-house developed Rabbit 3000 based Navigation/Control System. We chose this unit 

because it incorporated an accurate GPS (<3 meters) with an average refresh rate (0.5 Hz), a three-axis 

magnetometer, accelerometers, gyros, a Rabbit 3000 processor, and had a skeleton code that was used in 

several courses we took.  

To use the GPS, we connected the unit to the laptop via serial connection and the programming 

port. Since the unit did not have a direct serial connection, we used an onboard TTL port with a TTL to 

RS-232 (serial) cable to send data to our laptop and we used a standard serial programming cable to 

program the Rabbit processor via the programming port and Dynamic C coding. The data that we 

requested from the unit came from the onboard Rabbit 3000 processor. In the present state, we only used 

the latitude information, longitude information, and wireless emergency stop data, but we also export the 

magnetometer data, number of transmissions, header, and footer.  

The actual calculation data occurred in the MATLAB workspace. When the GPS, and e-stop, data 

was sent out of the Rabbit processor via the TTL to RS-232 cable, MATLAB read the serial port on the 

laptop the data was coming through and saved that as a string. Using the string read function in 

MATLAB, we were able to break apart the message and save the data as a variable representative of what 

it is, i.e. the latitude data was saved to the variable “lat”. With this data, and when desired waypoints have 

been loaded, it was possible to determine a desired heading for the vehicle to drive.  

 

Wireless Emergency Stop 

 Our initial idea was to use a garage door remote as a transmitter, but this still required a 

mechanical receiver. We decided upon a Futaba remote control and receiver. These systems are 

commonly seen on remote controlled vehicles built by students. These parts were readily available and 
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easily replaceable if they break. The Futaba receiver held 8 ports which could receive data from the 

remote control. 

 

Camera 

The overall goal of the vision system was to look ahead at the course and determine where to 

steer the vehicle.  To do this, the vision system had to discern the white lanes from the grass field.  Once 

the lanes were found, the vision system had to find the center of the lane and determine if the robot was to 

the left or to the right of the lane ahead so it could steer accordingly. 

 First to achieve the goal of the vision system, we had to choose a camera to use.  We kept in mind 

the specific metrics, including specifically a simple design and accuracy of the sensors.  We decided to 

use in house parts to achieve the simple design metric.  We were given two options: a D Link camera and 

a Creative Live Notebook Ultra Camera.  We had some experience with the D Link camera in previous 

systems courses and we knew it was not as accurate as we would like.  The Creative Live Notebook Ultra 

boasted a 1.3 megapixel resolution and an ultra wide viewing angle of 85 degrees, which was be ideal for 

seeing both of the lanes.  We decided to use the Creative camera and were very pleased with the results. It 

was accurate, performed the functions we needed and even came with software to adjust brightness and 

other relevant camera settings.  Additionally, this camera used a USB interface to communicate with the 

laptop.  The cost of the camera is $70.00 from newegg.com. Once the camera was selected we looked at 

ways of mounting the camera to the frame of the vehicle.  We decided to go with PVC pipe for several 

reasons.  The PVC pipe was solid and durable. It was also moveable and not glued, which allows us to 

adjust the angle of the camera whenever necessary. One disadvantage to our setup was the shakiness 

whenever the vehicle moved.  This however was not necessarily attributed to the PVC pipe, but more to 

the size of the hole, the PVC pipe went through, being too big.  This hole can be filled to reduce the 

shakiness of the structure.   

 With all the hardware set up, we needed to come with accurate code to take the hardware and 

come up with relevant data to steer the vehicle.  To do this we used MatLab Simulink to program our 

vision system.  The following is pseudocode for how the vision system works (1)  Take Image; (2) 

Threshold and Crop; (3) Morphology; (4) Detect Lane; (5)  Find Center of Lane (6)  Output Where to 

Aim.    The main work of this system was done in the Threshold Subsystem, the Lane Detection 

Subsystem, and the Find Lane Center (which was embedded MatLab code).   



 8 

Threshold Subsystem

Output

2

RGB

1

Video Viewer

Video

Viewer
ImageImageImage

Image Data Type

Conversion 1

Convert Image

to single

Image Data Type

Conversion

Convert Image

to single
Erosion

Erode

Dilation

Dilate

Crop and Threshold

u yfcn

hsv

2

rgb

1

 

 

 

 

 

 

This code looks only at rows 80-100 of the input image (which is used to look ahead in the course a 

specific distance).  Then it thresholds based on, in this case, the hue and value numbers.  This was 

embedded in code, because it was more versatile and easier to change the numbers for thresholding. It 

was also easier to switch thresholding by hue, saturation, and value.  To threshold by these numbers, we 

had to take a picture and convert it to HSV.  Once in HSV, we looked at the individual Hue, Saturation, 

and Value images to decide which to threshold by.  We used the MatLab „imtool‟ function to get specific 

values for thresholding.  We found that on different days we might need to threshold by hue, whereas 

others we had to threshold by saturation, but as long as the lighting stayed somewhat constant over the 

day it would threshold very effectively.  Also, we originally had morphology in our simulink diagram to 

reduce noise from bad thresholding.  However, in the final model we took out the morphology, because 

we were able to threshold effectively. 
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 For the lane detection subsystem, we took several different approaches.  At first, we had bad 

videos that were unable to threshold very effectively, so we decided to try blob analysis and get the 

centroids of the blobs, which we assumed to be the lanes.  There was a problem with this in that if the 

lanes were broken and not full blobs we were unable to get the lane data consistently.  After this we 

moved to a new approach called pixel searching. We wrote embedded MatLab code that looked at 

specific rows and searched from left to right for the lane pixels in the image.  The problem with this 

approach was that if there was any noise whatsoever and the program runs into it, the program assumes 

the noise pixel was the lane and ruins the whole approximation of the lane.  This was unacceptable, so we 

finally moved to using Hough transforms.  Hough transforms worked by finding where large pixel 

collections laid in the image to correlate to a straight line.  We originally thought to use this approach, but 

decided against it because there was too much noise and we thought it did not work well.  Once we got 

good thresholding images, we tried the Hough transform and it worked very well. 

 The final component of the vision system was the lane center determination.  We needed to find 

the center of the lanes after finding them through the Hough transform.  To do this we wrote embedded 

MatLab code to calculate the center of the lane and tell the vehicle where to aim for.  The main problem 

this program had to address was how many lanes the lane detection system found.  We knew there were 

possible cases where only one lane was found or even no lanes were found.  This program addressed 

these cases in the following manner.  If one lane was found and the midpoint of the lane was on the left 

half of the screen, then we assumed the left lane.  If the midpoint was in the right side then we assumed 

the right lane.  We will have to address the possibility of no lanes in the future, because as of now the 

program will just aim straight, when in reality, we will probably need to make the robot rotate 360 

degrees.  Additionally, since we have no video data from actual competitions, we think that our single 

lane decision making process might need to be changed.  Until we actually run through the competition 

course, we will not know how to tweak the system, but we should be able to make a more effective 

decision when we have the data. 

 

Subsystem Interfaces 

Wheelchair 

 Battery Bank: two 12 volt batteries supply 24 volts in series. 

 Internal motor brakes require a continuous 24 volts to disengage. 

 Each motor requires 9 ampere.   

AX-1500 Controller 

 30 ampere maximum limit.  

 Connected RS-232 serial connector from control board to laptop.  
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 The 24 volts from the battery bank are applied directly to the AX-1500 to power the board and 

the motors.  

 The control board must be initialized in MATLAB from an open serial port. This is done using 

„initRoboteq‟.  

Manual Emergency Stop 

 The ground pin needed to be removed from the switch, in order to prevent the AX-1500 from 

sending a back EMF through the wires and blowing a fuse.  

Laser 

 Requires customized RS232 serial cable. 

 Requires customized power cable and complimentary (±12) volt power supply. 

GPS/Compass 

 The GPS unit was originally powered by a wall outlet, which was stepped down to a regulated 

3.3V, but to make the component mobile, we used a regulated 5V from a 12V battery to power 

the board.  

Wireless Emergency Stop 

 This system worked by sending a “high” voltage (binary 1) or “low” voltage (binary 0) to the 

Rabbit processor via pin PD7. 
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Design Evaluation 

 

Drive Train and Platform Design  

Objective 1 2 3 4 5 

Quick Speed < 1 mph 1.5 mph 2.5 mph 3 mph 4.5 mph 

Easy to 

Operate 

> 10 min 

setup  

7 – 10 min 

setup 

5 – 7 min 

setup 

3 – 5 min 

setup 

<  3 min 

setup 

Simple 

Design 

complete 

custom build 

several 

custom parts 

extensive 

external 

sources 

little help 

from outside  

built with 

COTS parts 

Low 

Maintenance 

1 hour in 

shop for 1 

hour run 

 

1 hour in 

shop for 2 

hour run 

 

1 hour in 

shop for 5 

hour run 

 

1 hour in 

shop for 7 

hour run 

 

1 hour in 

shop for 10 

hour run 

 

Quick Start > 60sec start 

time 

45 – 60sec 

start time 

30 – 45sec 

start time 

26 – 30sec  

start time 

15 – 25sec 

start time 

Durable complete 

destruction 

major repairs  minor repairs minor 

damage, no 

work 

no structural 

damage 

Rugged flat terrain 

only 

slight grades hilly small rocks all terrain 

 

 

We tested the motor controller extensively to ensure each of the two motor functions were 

capable of meeting the team‟s overarching functions. For the most part, the motor functions worked well, 

but occasionally received errors from the various subsystems due to the clear delay between iterations of 

[V] and [W]. Our vehicle design met all the constraints and standards set forth by the IGVC, but there 

were a few technical and functional errors. The platform was 1” too narrow, hence, not meeting the 2‟ 

width minimum.  This will need to be address in regards to future modifications to the overall design.  

Greater gauge of wire is recommended as well as more fuses to prevent mishaps.  

 

Objective 1 2 3 4 5 

Obstacle No avoid Avoid 25% Avoid 50% Avoid 75% Avoid 100% 
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Avoidance 

Accurate 

(Sensors) 

Unreliable 

readings 

Can detect 

25% of 

objects 

Can detect 

50% of 

objects 

Can detect 

75% of 

objects 

Can detect 

100% of 

objects 

Durable in 

collision 

Complete 

destruction 

Major 

damage  

Structural 

damage 

Minor 

cosmetic 

damage 

No damage 

 

Laser     The final design performed well.  As stated earlier, our final design was very simple.  It was able 

to detect and avoid 100% of the obstacles.  If the laser detected an obstacle, it would find a way around 

the obstacle, and if it could not, then it would stop the vehicle. The way we demonstrated the use of the 

laser was by setting up a test course and having the vehicle maneuver through the course.  The left image 

is the course from the laser‟s point of view, while the right image is an overall perspective.  

 

The vehicle was able to move in the hall without hitting the obstacles.  Overall we were satisfied 

with this design aspect.  If given more time, a more robust code could be written.  Now, with the current 

code, there is oscillation in the system because there is a delay from when the laser scans to when it sends 

a command to the motors, to when it takes another scan. 

GPS/Compass 

To test the functionality of this system, the GPS unit should be taken out to a large field with a 

secondary, hand-help GPS system. Fixes should be taken with both systems and compared. If they match, 

the computational algorithm and motor control should be tested by entering desired waypoints and 

actually setting the vehicle in motion to see if it reaches those points.  

 While developing this system, the greatest difficulty was getting accurate, real-time data from the 

GPS unit. As has been determined, the “buffer” size setting in MATLAB to read the serial port was 

initially set to read 512 characters but our message was only approximately 57 characters. Since the 
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buffer was set too large, multiple GPS messages would fill the buffer and after the first message was read, 

old data would still be sitting in the buffer. To solve this problem, we redefined the buffer size in 

MATLAB to fit exactly one message. Another method to solve this problem would be to “empty” the 

buffer after each reading. This would alleviate the problem of multiple messages being in line since only 

one message would be read before the buffer were emptied. For the time being, our solution works well.  

  

Gantt Chart 

 

Cost and Labor 

 Drive Sun fire Plus Rear Wheel Drive Wheelchair - $1530.00 

 NSC Semi-Rugged Laptop - $1475.00 

 2 – Roboteq Ax1500 Motor Control Board - $275.00 ea.  

 8 – 30amp fuses - $2.00 ea. 

 RABBIT 3K Navigation Board - $400 

 Emergency Stop - $100 

Misc. Parts - $10  

Total: $4081.00 

 Student Labor - $26/hr * 126hr = $3,276 
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      ($3,276 * 6students) = $19,656 

 Advisor/Tech Support - $50/hr * 4hr = $200 

  Total: $19,856 
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